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Abstract 

ing with the estimation of functions reflecting dependency between 
a set of inputs and dependent outputs corrupted with some level 
of noise have been employed in our approach. In signal process- 

With respect to this signal de-noising formulation our method 
consist from the following steps used with the aim of the function 
f (x) recovery from the original noisy signal measurement: 

inputs (x) are equidistantly sampled points in input space; in 
1-D we pre-define sampling interval to be [--1,1] and the num- 
ber of sampling points then depends on the selected sampling 
rate. This allows us to find optimal or near optimal parameters 
for the kernel mapping (or even particular kernel mapping) for 
different classes of signals under investigation. 

I 

the basis function $%(x) are taken to be components obtain by 
kernel PLS, which may be seen as the estimates of orthogonal 
basis in a feature space defined by kernel function used. These 
estimates are sequentially obtained using the existing correla- 
tions between nonlinearly mapped input data and the measured 
noisy signal [I]. 



to set the number of basis functions D we have used the VC- 
based model selection criterion described in [2.3,4]. The order- 
ing of the basis functions for the purposes of the used model 
selection criterion is defined by their sequential extraction. 

using the locally based kernel PLS allows us to deal with a pos- 
sible discontinuity and non-stationarity in the signal of inter- 
est. Locality is achieved using modified kernel PLS algorithm 
incorporating the weight functions reflecting the local areas of 
interest. Depending on weight function selection this allows 
us to construct soft or hard thresholding regions where kernel 
PLS regression models are constructed. Final estimate consist 
of composition of individual local kernel PLS regression models. 

we compared our methodology with the state-of-the-art wavelet 
based signal de-noising and smoothing splines approaches on 
heavisine and artificially generated event-related potentials dis- 
tributed over individual scalp areas. Different levels of additive 
white and colored noises with respect to clean signals were used. 



Kernel PLS regression 

0 linear PLS regression in feature space .F 
0 decomposition: X = TPT + E ; Y = UCT + F 

latent variables (scores): 
K i- 1 

t i  W i k ( X k  - 1 tbpbk) 
k = l  ' b = l  

ui = f(tJ + hi - inner relation in PLS model; 
hi - vector of residuals 

0 NIPALS algorithm applied to PLS finds weights w, c such 
that 
[cov(t, U)l2 = [cov(Xw, Y C ) l 2  = rnUX,,~=l+1[ cov(Xr, Ys)12 

XXTYYTt = KYYTt = A t  

or iterative kernel-based NIPALS algorithm 

0 nonlinear (kernel) variant [l]: 

u = YYTt 

0 sequential extraction t ,  u + T, U 
0 deflation of K and Y matrices after each step 

0 final regression model: 
1 T  Y = XB = K U ( T ~ K U ) -  T Y = T T ~ Y  = TB 

assuming y E R 

$(x) = &(x) + b 2 t 2 ( X )  + . . . + b&(x) * , b=TTy 



Locally based kernel PLS regression 

0 soft clustering : r - vector of weights 

r, = Cr ; R d  = d iag( r )  ; J = ones(n, 1) ; I = eye(n) 

rTX 
X, = Rd(X - J---) M ; mean(X,) = O 
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kernel variant 
Jr' Jr' 

T S  T S  

K, = X,X,T = Rd(I - -)K(I - -)TR,j 

rTY 
YT = Rd(Y - J-) 

T S  

Gaussian kernel: 



0 local kernel PLS regression 
rn-th cluster defined by weight vector rm: 
sequential extraction of t ,  u from 
K?YF(Y, m T  ) ; Y,"(Y, m\ T + Tm,Um 

0 final model ( M  - clusters): 

m=l 

I I 

m=l 

I 

I 
~ 

- 1 0  -5 0 



VC-based complexity control 

0 for regression problems with squared loss the following bound 
on prediction risk (PR) holds with probability 1 - 7 [4] 

h - VC dimension of the set of approximating functions 
c - constant reflecting the “tails of the loss function distri- 
bution” 
a - theoretical constant 
(z)+ = u ifz > 0 

0 otherwise 

Cherkassky et. a1 constructed empirical (heuristical) Vap- 
nik’s measure [2,3] to compute estimated risk (ER)  

b = ( d  + 1)/n where d + 1 represents VC dimension of the 
approximation function (1) with d terms 



I Smoothing splines 
I 

natural cubic splines with knots at xi ; i = 1, . . . , n 

0 sauared loss 

~ 

0 complete basis --+ shrink the coefficients toward smoothing 

Wavelet smoothing 

complete orthonormal basis -+ shrink and select the coef- 

wavelet basis is localized in t ime  and frequency 
y* = W'y ; discrete wavelet t rans form 

ficients toward a sparse representation 

(i.e. full LS regression coefficient) 
W n x ,  orthonormal basis 

.i;. = s ign (y ; ) ( l yJ  - A), 
0 SURE shrinkage : min, Ily - WrIIi + 2Allrlll + 

?? x=aJZ@i 
0 i = VVP inverse wavelet transform 

I 

j 



D at a c o 11s t r uct ion 

heavisine function 
additive noise: white Gaussian 

Event related Dotentiah - N100,P300 
I 

additive noise : 

1 - 1  I I 

white Gaussian, 
relax state spatially distributed EEG signal 

+ h 

Ref. Reference [red): (nl+nz)R - ource 5 nods 4: -18 nAm. 460 mr 
I 

351 ms 

i 
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Results 

heavisine function 

Noise 

128 
256 
512 
1024 
2048 

SNR 1dB 
L K P L S Wave 
.32 .33 
.23 .25 
.17 .19 
.13 .15 
.12 .12 

Table 1: N 

SNR 5dB 
LKPLS Wave 
.21 .22 
.16 .17 
.13 .14 
.I1 .11 
.10 .09 

SNR lOdB 
LKPLS Wave 
.14 .14 
.I1 .12 
.10 .10 
.08 .08 
.07 .06 

SNR 15dB 
LKPLS W-ave 
.10 .10 
.os .08 
.07 .07 
.07 .05 
.07 .04 

rmalized root mean squared error. 



- noisy 
- clean 
- Kave 

L V  

-1 -008 -0.6 -0,4 -0.2 0 0.2 004 05 0.8 1 
20 I I I I I I I I I I I I I 1 I, I /  I I Example 2, n=lO24, snr= 5dB 

- clean 
- Wave 
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Let’s cheat - a little bit !! 

128 1 .22 .33 
256 .17 .25 
512 .12 .19 
1024 .09 .15 
2048 . .12 

-1 -0.9-0.8 -0.7 -0.6-0.5-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

.18 .22 .13 .14 I .10 .10 

.13 .17 .10 .12 .08 .os 

.10 .14 .09 .10 .07 .07 

.09 .11 .08 .08 .07 .05 
.09 .06 .04 

Noise( SNR 1dB 1 SNR5dB 1 SNR lOdB 1 SNR 15dB 1 
j LKPLS Wave I LKPLS Ivave 1 LKPLS Wave I LKPLS Wave 1 



0 ERP - white! Gaussian noise 

8fi I Exar 1 CZCl 
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annel, n=512, snr=-3dB 

I I I I I I I I I 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 



c 

I- I' 

I I 

~ 

/ \ 

C 

- I f  

-; 

I 
- L :  

U 

7- 

- C  
a 

- L L  

b 
- L L  

a - n  

- a  F 

co 
- I -  

h 
- I -  

* 
- Q  

- s  
d- 

- L L  

CQ - a  

- 3  
CQ 

- L L  

N 
- Q  

- 3  

i i i l l l l i  
I I 

/ 

I 
1 

f 1 
(9 
0 



' I l l /  I .  

r. 0 rI 

T- 
I 

0 

U 
I 

i 



ERP - spontaneous EEG like noise 

Example 1, 
Pz channel, n=512, snr=GdB 

I I I 1 I I I I I 

! 

noisy 
1 - 4 clean 

- LKPLS 
- Spline 
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Discussion. f u t u r e  work 

6 comparable results with existing state-of-the-art smoothing and 
de-noising techniques 

0 the construction of the (locally based) kernel P i s  regression 
basis allows to incorporate the prior knowledge about the signal 
of interest 

0 input samplings dimensionality not crucial problem in (locally 
based) kernel PLS smoothing - e.g. images de-noising 

0 multivariate (locally based) kernel PLS allows straightforward 
extension to higher dimensional smoothing problems plus the 
existing correlation among the signals determine the basis con- 
struction - e.g. spatio-temporal smoothing of EEG recordings 

possibility to combine shrinkage and selection techniques or 
better model selection techniques ? 

computational disadvantages of kernel based approaches can 
be compensated by “segmentation” in the case of locally based 
kernel PLS ? 

0 smoothing real world biological signals - ERP, eye-blinks, etc. 



References 

1. Rosipal R., Trejo L.J.: Kernel Partial Least Squares Regression 
in Reproducing Kernel Hilbert Space. Journal of Machine Learning 
Research, 2:97-123, 2001. 
2. Cherkassky V., Shao X., Mulier F.M.? Vapnik V.N.: Model Com- 
plexity Control for Regression Using VC Generalization Bounds. 
IEEE Transaction on Neural Networks, 10: 1075-1090, 1999. 
3. Cherkassky V., Shao X.: Signal estimation and denoising using 
VC-theory. Neural Networks, 14:37-52, 2001. 
4. Vapnik V.N.: Statistical Learning Theory. John Wiley & Sons, 
1998. 


